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Breast Height Diameter Estimation From
High-Density Airborne LiDAR Data

Alexander Bucksch, Roderik Lindenbergh, Muhammad Zulkarnain Abd Rahman, and Massimo Menenti

Abstract—High-density airborne light detection and ranging
(LiDAR) data with point densities over 50 points/m2 provide
new opportunities, because previously inaccessible quantities of an
individual tree can be derived directly from the data. We introduce
a skeleton measurement methodology to extract the diameter at
breast height (DBH) from airborne point clouds of trees. The esti-
mates for the DBH are derived by analyzing the point distances to
a suitable tree skeleton. The method is validated in three scenarios:
1) on a synthetic point cloud, simulating the point cloud acquisition
over a forest; 2) on examples of free-standing and partly occluded
trees; and 3) on automatically extracted trees from a sampled
forest. The proposed diameter estimation performed well in all
three scenarios, although influences of the tree extraction method
and the field validation could not be fully excluded.

Index Terms—Computational geometry, forestry, image
analysis.

I. INTRODUCTION

THE Actual Height model of The Netherlands (AHN2) [1]
is a pioneering initiative to produce a detailed elevation

model of a whole country. Such elevation information is highly
demanded by water boards, provinces, and the national gov-
ernment. The elevation model utilizes high-density airborne
laser altimetry, from which point clouds of individual objects
are extractable. Skeletons are line-like descriptions that are
established descriptors for shapes and have been applied to
point clouds. Hence, linelike descriptions determined from such
high-density airborne laser data and centered within the point
cloud can be used to derive geometric measurements. In the
context of this letter, we focus on the diameter at breast height
(DBH) estimation of trees (stem diameter at 1.3 m height). In
forestry, the DBH of individual trees is an important input pa-
rameter to estimate output parameters, such as the leaf area in-
dex [2], to obtain insight in the carbon water relations in forests
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[3] or into growth competition between individual trees [4].
Furthermore, the DBH is often used for hydrological applica-
tions because standing trees influence the water flow in flooded
areas [5]. Many countries store the DBH of urban trees in cadas-
tre databases for monitoring purposes. Except for urban trees,
these applications have in common that no inventory of the
detailed tree species exists. Available DBH estimation methods
often incorporate species information as a variable, e.g., [6].
The importance of DBH for the estimation of the wooden
tree volume is reported in [7]. Likewise, the same importance
was mentioned in a comparison of high-density airborne- and
terrestrial-obtained data to quantify individual trees [8].

Before estimating the DBH, the detection of individual trees
from the data set is necessary, e.g., [9]–[16]. As a next step,
allometric relations between crown size, tree height, and stem
diameter are used to estimate the DBH [17]–[20] as a func-
tion of tree height and maximum crown width, incorporating
species-dependent parameters [21]. An alternative to allometric
approaches was first demonstrated by Monnet et al. [22], who
used a supervised machine-learning approach to estimate forest
stand parameters from sparse airborne data with 2.8 points/m2

on average. In contrast to the method described in this letter,
they estimated the mean diameter of a forest stand. The same
machine-learning technique was used in [23] to derive individ-
ual stem diameters.

A skeleton-supported estimation of the DBH directly from
the point cloud was only sketched in [24] and [25]. Previously,
the SkelTre skeleton [26] was used to extract tree size parame-
ters from terrestrial laser scanning data [27].

II. METHODOLOGY

A. Skeletonization of the Trees

Extracted individual trees serve as input to our method. Here,
we used the method described in [28] to extract mature trees
from a given data set. This particular method incorporates
ground-level removal and filtering of understorey vegetation.
The extracted trees are skeletonized with the SkelTre algorithm
[26], which takes only one user-defined parameter as input. This
parameter is the side length of cubes that initially subdivide the
point cloud into unique equally sized volumes, each containing
point-cloud points. From the point cloud of one tree (see Fig. 1,
left), the 1-D SkelTre skeleton (see Fig. 1, middle) is derived.
The SkelTre skeleton is a graph whose vertices are centered
within the point cloud. The edges connecting the vertices
describe the tree structure. A practical property of this skeleton
is the correspondence between each vertex of the skeleton graph
to a unique subset of points of the point cloud around the
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Fig. 1. Principle of the skeletonization. (Left) A tree point cloud obtained with high-density airborne laser scanning. The point cloud is colored by height.
(Middle) SkelTre skeleton derived from the point cloud with 1.5-m minimum cell size. The stem is traced from the root vertex upward. v denotes the first vertex
with more than two incident edges. (Right) Tree point cloud colored by distance to the calculated skeleton. The DBH region schematically marks the points used
for calculating the DBH.

location of the vertex. In particular, the edge covering the breast
height connects two vertices, which provides a point cloud sub-
set suited for estimating the DBH. For details, we refer to [26].

B. Diameter Measurement

The diameter measurement is a three-step approach relying
on the computation of the point-skeleton distance (see Fig. 1,
right): first, the stem is extracted from the skeleton; second, a
representative bin is chosen from the histogram of distances of
the point-cloud points to the skeleton. This step results in a first
estimation of the DBH. The reliability of this estimation is as-
sessed in step 3, where an alternative geometrical construction
is applied to detect a possible underestimation of the DBH in
step 2.

Stem Extraction: The skeleton graph consists of vertices and
edges (see Fig. 1, middle). The extraction of the stem from
the skeleton graph follows a simple rule. The stem is extracted
by tracing from the vertex representing the start of the stem at
ground level (root vertex) upward. At each vertex, we evaluate
the incoming and outgoing edges of the skeleton graph’s ver-
tices. An incoming edge is the last edge traced before reaching
the vertex to be evaluated. All other edges are outgoing edges.
In case of more than one outgoing edge, the edge forming an
angle closest to 180◦ with the incoming edge is selected.

We select point-cloud points for obtaining the stem diameter
by following the extracted stem from the root to the stem
segment that covers the DBH. We assume that the diameter is
not significantly varying between 1 and 4 m stem height for
mature trees. This assumption allows us to add higher segments,
until at least 40 points are collected or the 4-m height is reached
to obtain a meaningful histogram of point-skeleton distances.

Histogram Evaluation: The distance d(p) between each
point-cloud point p belonging to the stem and the corresponding
skeleton edge is computed as

d(p) =
|(x2 − x1)× (x1 − p)|

|x2 − x1|
(1)

where d denotes the distance to a line defined by two points x1

and x2, which are the coordinates of the two vertices of an edge.
Here, p denotes a point-cloud point, such that z(x1) ≤ z(p) ≤
z(x2), where z(.) denotes the z-coordinate.

From the calculated point-skeleton distances, a histogram is
plotted. This histogram is calculated based on the assumption
that every distance d represents the distance between the stem
surface and the stem center. The majority of distances will result
in a peak value in the histogram. The bin corresponding to the
peak value is the so-called peak bin. If no unique peak bin
exists, then the peak bin closest to the median of the distances is
chosen for diameter evaluation. The mean dH of the distances
in the peak bin is assumed to be the estimate of the radius of
the tree.

Validity Criterion: The motivation for a validity criterion
is to enhance its robustness against diameter underestimations
resulting from inaccurate centeredness of the skeleton graph.
Inaccurate centeredness potentially leads to an underestimation
of the diameter because of an increased amount of significantly
smaller distances to the skeleton. Possible reasons for inaccu-
rate centeredness are:

1) nonuniform sampling of the stem due to occlusion effects
of neighboring trees and their canopies;

2) blunders in the sparse airborne data.

In the middle of a forest, the two situations are often amplified
when trees are partly occluded from all sides.

This potential underestimation generated by occlusion ef-
fects and blunders motivates the evaluation of the estimated
diameter dH in four steps: First, the points at breast height
used for estimating dH are projected on a plane perpendic-
ular to the local skeleton direction. As a second step, an
approximation dQ = (1/(|Q|))

∑|Q|
i=1 maxp∈Q ‖p− qi‖ of the

outer diameter doutside of the projected points is determined,
where Q = {q1, . . . , q|Q|} is the set of all projected points (see
supplemental material). The third step computes the threshold
value dt = (1/2)dQ

√
3, to obtain an approximation of the
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Fig. 2. FLI-MAP 400 simulation with 75 points/m2. Three example trees
from the simulation data set colored by height.

Fig. 3. Regression analysis of the DBH estimated for 18 test trees from the
simulation data set. Three trees could not be analyzed with the histogram
method and were excluded from the regression.

inside diameter of the projected points, as given in [29]. If
dH ≤ dt, then dt is taken, instead of dH , as an estimation of the
stem DBH.

III. RESULTS AND VALIDATION

A. Simulated Data

The simulation data set used and its generation is described
in detail in [30]. It simulates 75 points/m2 measured from
the top of an artificial forest patch. This forest patch contains
18 trees with diameters ranging equally in 0.1 m steps from
0.3 m to 2.0 m. The simulation data set is noise free, such that
all projected stem points lie on a circle, but incorporates the
effect of self-shadowing on the stem (see Fig. 2). Shadowing
affected three of the 18 trees, such that less than 40 points were
available to analyze. For the 15 remaining trees, a correlation
coefficient of 0.97 and a root-mean-square error (RMSE) of the
residuals to the regression line of 5 cm could be obtained (see
Fig. 3). On the simulation data set, we used a minimum cell size
of 2 m to extract a connected SkelTre skeleton and a histogram
bin size of 5 cm. The validity criterion did not identify any poor
estimates in this case.

B. Six Test Cases

Six FLI-MAP 400 point clouds sampling real trees were cho-
sen to evaluate the histogram method (see Fig. 4). Trees 1–3 are

Fig. 4. Manually extracted trees. (Column 1) Input point cloud colored by
height. (Column 2) Extracted skeleton and points used for diameter estimates.
(Column 3) Histogram of the distances shows the median as a red vertical
line. For every tree, the manual measurement, the diameter estimation with
the histogram, the value of the validity criterion, and the diameter of a fitted
cylinder with the number of points used in brackets are given.

free standing. Trees 4–6 are partly occluded trees from a forest
border and, therefore, only partly sampled. Fig. 4 shows the
point cloud colored by height, the extracted stem segment of the
skeleton along with its corresponding points colored by point-
skeleton distance, the histogram of point-skeleton distances,
and the results of the diameter estimation for every tree. We
give, in total, three measurements for each tree to facilitate
the comparison: a manually obtained tape measurement as
ground truth, the result obtained by the histogram method, and
the diameter of a cylinder manually fitted to the stem points
with the software Cyclone [31]. Additionally, the value of the
validity criterion is reported. The six test cases were extracted
by hand in order to eliminate the influence of the tree extraction
method. We chose the smallest possible minimum cell size of
1.5 m that still resulted in a connected skeleton as input for
the SkelTre algorithm. Tree 1 is considered as a standard case
giving good results. Tree 2 is an example, where there are
insufficient points present to estimate the diameter and noise is
covering the middle of the stem. In case of Tree 3, the skeleton
is attracted to one side because of the nonuniform sampling of
the tree stem. A tree affected by shadowing effects (Tree 4)
still gives an acceptable result (Tree 4), although the stem was
covered by noise points. Observe here that insufficient removal
of understorey vegetation as present on the base of the tree stem
causes overestimation. Trees 5 and 6 again show good results
close to the diameters observed in the field. In case of the six
selected test cases, the data were of sufficient quality; therefore,
the validity criterion was not necessary.
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Fig. 5. Scatter plot of estimated and field-measured diameters. The
mean/min/max errors are 16.4 cm/1.0 cm/46.0 cm for the histogram estimation,
12.6 cm/1.0 cm/46.0 cm for the validity criterion, and 11.6 cm/1.0 cm/36.0 cm
after correction, respectively.

C. Extracted Trees From a Sampled Forest

A FLI-MAP 400 data set was collected over a mixed forest
stand containing leaf and pine trees in the Duursche Waarde,
The Netherlands. Forty-nine trees were extracted from the
data set shown in Figs. 2 and 3 of the supplemental material.
Depending on the chosen input parameters of the tree extrac-
tion algorithm, individual trees may be wrongly classified as
understorey vegetation. On-site inspection of the forest patch
revealed that five trees were not detected by the tree extraction
method. From these 49 trees, one extracted tree was lying on
the ground at the time of the field validation measurement, and
one unresolvable case of a tree, which has grown two stems,
was found. Only 34 were used for validation after filtering
understorey vegetation. The manually measured average diam-
eter of the 34 trees is 40 cm, showing a standard deviation of
7.2 cm with minimum and maximum diameters of 19 and
52 cm, respectively.

The histogram method without validity criterion resulted in
an average diameter of 37 cm, which deviates only 3 cm from
the manually obtained average diameter. The minimal diameter
derived by the validity criterion shows an average of 28 cm.
The validity criterion was active in six cases and improved the
estimated average diameter to 39 cm. The diameter estimates
derived with the histogram method, the lower bound diameters
of the validity criterion, and the improved diameter estimates
are shown in Fig. 5. Here, the largest avoided error by the
validity criterion was 31 cm in the diameter. The diameters
estimated with the histogram method show a standard deviation
of 17 cm, whereas the lower bound diameters detected by
the validity criterion show a standard deviation of 15 cm.
Applying the validity criterion slightly improved the original
standard deviation of the histogram method to 16 cm. Only the
combined use of the histogram method and the validity criterion
resulted in a significant but weak correlation (r2 = 0.11, p <
0.1, spearman r = 0.36, p < 0.05). We calculated the RMSE
for the data shown in Fig. 5 as RMSE =

√∑n
i=0(ci − fi)2,

where n is the number of measured trees, c are the computed
diameters, and f are the field-measured diameters. The RMSE
resulted in 2.6 cm (6.8%) for the data improved with the
validity criterion, in 3.0 cm (8.1%) for the histogram estima-
tion, and in 3.4 cm (12.2%) for the minimal diameters de-
rived by the validity criterion alone. The mean/min/max errors
are 16.4 cm/1.0 cm/46.0 cm for the histogram estimation,
12.6 cm/1.0 cm/46.0 cm for the validity criterion, and 11.6 cm/
1.0 cm/36.0 cm after correction, respectively. We found that
the extracted trees in the interior of the forest were affected by
strong underestimations. Here, we again used a minimum cell
size of 1.5 m as input to the skeletonization algorithm.

IV. DISCUSSION AND CONCLUSION

We have presented a new promising DBH estimation concept
and introduced an upper bound to avoid overestimations. For
deciduous forests, the method is restricted to leaf-off conditions
to obtain a significant amount of laser pulse returns from the
tree stems. For applications focusing on free-standing trees,
such as those shown in the six test cases, insufficient stem sam-
pling was not an observed issue. In summer, with a dense leaf
roof where almost no pulse returns from the stem are obtain-
able, traditional allometric methods are favorable because tree
crown width and height are still possible to estimate. Another
problem is the removal of understorey vegetation, which can
cause the unwanted removal of data points belonging to the
stem. Removed data points might be the reason for observed
underestimations compared to the manual ground truth. The
amount of pulse returns on the tree stem currently limits
the method, such that up to 4 m of the stem length are used
for the DBH estimation. Fortunately, increasing data density
will lower the stem threshold. To date, 170 points/m2 have been
already reported [32]. A future validation strategy is to estimate
the DBH from repeated light detection and ranging (LiDAR)
data of the same forest patch. The variation in outcome will
give more insight in the robustness of the presented method,
since the DBH is not expected to change significantly in one
year for full-grown trees.

The main advantage of our method is the ability to compute
the DBH for individual trees directly from the point cloud.
The difficulties to relocate individual trees in a complex forest
impede the collection of a large validation data set, because the
dense canopy does not allow precise GPS locations to obtain re-
liable tree positions. Future research has to detail the influence
of the tree extraction process and the understorey filtering to
enable automatic estimations in real forest scenarios. Neverthe-
less, results from the simulated trees and from the six individual
trees give enough evidence to conclude that skeletonization of
trees is feasible for high-density airborne data. It is predictable
that data of even higher density will be widely available in
the near future, which positively influences the performance
of already-known tree extraction algorithms and the quality of
the skeletonization. Overall, high-density airborne data enable
the extraction of parameters on an individual tree level. Initial
studies indicate that tree inclination and orientation will be ro-
bustly derived [33]. Such information is not accessible through
low-density data that do not contain information about the stem
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geometry. Nevertheless, high-density airborne data imply the
cost of more data and the need for even more computation
resources.
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